Search results for "Tetrahydrofolate dehydrogenase"

showing 10 items of 17 documents

Heavy enzymes and the rational redesign of protein catalysts

2019

Abstract An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled “heavy” dihydrofolate reductases and their natural‐abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present…

010402 general chemistryProtein Engineering01 natural sciencesBiochemistryCatalysisEnzyme catalysisisotope effectsCatalytic DomainDihydrofolate reductaseMolecular BiologyAlcohol dehydrogenasechemistry.chemical_classificationalcohol dehydrogenasesCarbon Isotopesdihydrofolate reductasesbiologyBacteriaNitrogen Isotopes010405 organic chemistryConceptOrganic ChemistryAlcohol DehydrogenaseActive siteSubstrate (chemistry)Protein engineeringDeuteriumCombinatorial chemistrymolecular dynamics0104 chemical sciencesKineticsTetrahydrofolate Dehydrogenaseenzyme engineeringEnzymechemistrybiology.proteinBiocatalysisMolecular MedicineConcepts
researchProduct

Superficial thrombophlebitis in varicose vein disease: the particular role of methylenetetrahydrofolate reductase.

2010

Background The purpose of this study was to compare the genetic background of superficial (SVT) and deep vein thrombosis (DVT). Methods Factor V (FV)-Leiden (G16891A)-, factor II(G20210A)-mutations, protein C- and S, as well as methylenetetrahydrofolate reductase (MTHFR) polymorphisms at C677T and A1298C, and serum homocysteine levels (hcy) were determined in 29 patients with SVT and 26 with DVT. Findings FV- and –II-mutations were less frequent in patients with SVT (2/3) compared with DVT (9/5), respectively ( P < 0.002 in case of FV). However, the frequency of the MTHFR C677T polymorphism was significantly higher in patients with SVT compared with DVT (CT 12 versus 10, and TT 7 versus …

AdultMalemedicine.medical_specialtyPathologyDeep veinMutation MissenseDiseaseGastroenterologyVaricose VeinsInternal medicineVaricose veinsGenotypemedicineHumansSuperficial thrombophlebitisGenetic Predisposition to DiseaseHomocysteineAgedAged 80 and overMethylenetetrahydrofolate Dehydrogenase (NADP)Venous Thrombosisbiologybusiness.industryFactor VGeneral MedicineMiddle AgedThrombophlebitismedicine.diseaseThrombosisVenous thrombosismedicine.anatomical_structureAmino Acid SubstitutionMethylenetetrahydrofolate reductasebiology.proteinFemaleProthrombinmedicine.symptomCardiology and Cardiovascular MedicinebusinessPhlebology
researchProduct

DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents.

2019

Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, …

AntifungalCancer chemotherapymedicine.drug_classDrug Evaluation Preclinicaldihydrofolate reductase (DHFR) enzymePharmaceutical ScienceAntineoplastic AgentsComputational biologyReview01 natural scienceshybrid compoundsAnalytical Chemistrylcsh:QD241-44103 medical and health sciencesStructure-Activity RelationshipFolic Acidlcsh:Organic chemistryheterocyclic compoundsNeoplasmsDihydrofolate reductaseparasitic diseasesDrug DiscoverymedicineAnimalsHumansPhysical and Theoretical Chemistry030304 developmental biology0303 health sciencesHeterocyclic compoundbiology010405 organic chemistryDrug discoveryOrganic ChemistryDHFR inhibitors as anticancer agentSettore CHIM/08 - Chimica Farmaceutica0104 chemical sciencesDHFR drug discoveryTetrahydrofolate DehydrogenaseMechanism of actionChemistry (miscellaneous)Settore CHIM/03 - Chimica Generale E InorganicaDHFR inhibitors as anticancer agentsbiology.proteinMolecular MedicineFolic Acid Antagonistsmedicine.symptomMolecules (Basel, Switzerland)
researchProduct

Photogenotoxicity of folic acid.

2013

Folic acid (FA), also named vitamin B9, is an essential cofactor for the synthesis of DNA bases and other biomolecules after bioactivation by dihydrofolate reductase (DHFR). FA is photoreactive and has been shown to generate DNA modifications when irradiated with UVA (360 nm) in the presence of DNA under cell-free conditions. To investigate the relevance of this reaction for cells and tissues, we irradiated three different cell lines (KB nasopharyngeal carcinoma cells, HaCaT keratinocytes, and a melanoma cell line) in the presence of FA and quantified cytotoxicity and DNA damage generation. The results indicate that FA is phototoxic and photogenotoxic by two different mechanisms. First, ext…

DNA damageCell SurvivalAntineoplastic AgentsBiochemistrychemistry.chemical_compoundFolic AcidPhysiology (medical)Cell Line TumorDihydrofolate reductaseHumansCell ProliferationbiologyDNA synthesisChemistrySuperoxide DismutaseCatalasePhotochemical ProcessesNuclear DNAHaCaTTetrahydrofolate DehydrogenaseMethotrexateBiochemistryDNA glycosylaseCell culturebiology.proteinFolic Acid AntagonistsDrug Screening Assays AntitumorDNADNA DamageFree radical biologymedicine
researchProduct

Significant association of MTHFD1 1958GA single nucleotide polymorphism with nonsyndromic cleft lip and palate in Indian population.

2014

Objectives: Nonsyndromic cleft lip and palate (NSCLP) is genetically distinct from those with syndromic clefts, and accounts for ~70% of cases with Oral clefts. Folate, or vitamin B9, is an essential nutrient in our diet. Allelic variants in genes involved in the folate pathway might be expected to have an impact on risk of oral clefts. Given the key role of methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) in folate metabolism, it would be of significant interest to assess its role in NSCLP etiology. Study Design: The present study aims at examining the association between MTHFD1 1958G>A polymorphism and NSCLP risk by conducting a case-control study in south Indian population. Our sample …

GenotypeCleft LipMTHFD1IndiaSingle-nucleotide polymorphismOdontologíaBiologyPolymorphism Single NucleotideMinor Histocompatibility AntigensGenotypeSNPHumansAlleleFamily historyGeneral DentistryGeneticsMethylenetetrahydrofolate Dehydrogenase (NADP)ResearchCase-control studyBrain:CIENCIAS MÉDICAS [UNESCO]Ciencias de la saludCleft PalateOtorhinolaryngologyMethylenetetrahydrofolate dehydrogenaseCase-Control StudiesUNESCO::CIENCIAS MÉDICASSurgeryOral SurgeryMedicina oral, patologia oral y cirugia bucal
researchProduct

Redox Regulation of Dihydrofolate Reductase: Friend or Troublemaker?

2015

Oxidative stress is a hallmark of cardiovascular diseases1 and a major contributor to vascular dysfunction.2 On the basis on recent concepts, vascular oxidative stress is caused mainly by infiltrating inflammatory cells such as monocytes/macrophages or leucocytes,3,4 producing so-called kindling radicals that lead to the activation of secondary, vascular enzymatic sources of reactive oxygen species (mainly superoxide).2,5 A prominent example is the uncoupled nitric oxide (NO) synthase, which means that an NO-producing antiatherosclerotic enzyme is getting switched to a superoxide-producing proatherosclerotic enzyme.2 Molecular mechanisms causing endothelial NO synthase (eNOS) uncoupling or …

MaleNitric Oxide Synthase Type IIIAorta ThoracicOxidative phosphorylationBiologymedicine.disease_causeNitric OxideArticleNitric oxidechemistry.chemical_compoundEnosmedicineAnimalschemistry.chemical_classificationReactive oxygen speciesSuperoxideNitric Oxide Synthase Type IIIEndothelial CellsTetrahydrobiopterinbiology.organism_classificationTetrahydrofolate DehydrogenasechemistryBiochemistryCardiology and Cardiovascular MedicineOxidative stressmedicine.drugArteriosclerosis, thrombosis, and vascular biology
researchProduct

Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-glutathionylation of endothelial nitric oxide synth…

2011

Continuous administration of nitroglycerin (GTN) causes tolerance and endothelial dysfunction by inducing reactive oxygen species (ROS) production from various enzymatic sources, such as mitochondria, NADPH oxidase, and an uncoupled endothelial nitric oxide synthase (eNOS). In the present study, we tested the effects of type 1 angiotensin (AT(1))-receptor blockade with telmisartan on GTN-induced endothelial dysfunction in particular on eNOS phosphorylation and S-glutathionylation sites and the eNOS cofactor synthesizing enzyme GTP-cyclohydrolase I.Wistar rats were treated with telmisartan (2.7 or 8 mg/kg per day PO for 10 days) and with GTN (50 mg/kg per day SC for 3 days). Aortic eNOS phos…

MaleNitric Oxide Synthase Type IIIPhysiologyVasodilator AgentsPharmacologyBenzoatesCell LineNitroglycerinmedicineAnimalsHumansTelmisartanEnzyme InhibitorsPhosphorylationRats WistarS-GlutathionylationEndothelial dysfunctionGTP CyclohydrolaseBeneficial effectsNitroglycerinPharmacologyAngiotensin II receptor type 1Dose-Response Relationship DrugEndothelial nitric oxide synthaseChemistryEndothelial CellsDrug ToleranceAldehyde Dehydrogenasemedicine.diseaseGlutathioneMitochondriaRatsVasodilationOxidative StressTetrahydrofolate DehydrogenaseMolecular MedicinePhosphorylationBenzimidazolesEndothelium VascularTelmisartanReactive Oxygen SpeciesAngiotensin II Type 1 Receptor BlockersProtein Processing Post-Translationalmedicine.drugVascular Pharmacology
researchProduct

Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus

2007

Abstract Objective HMG-CoA reductase inhibitors have been shown to upregulate GTP cyclohydrolase I (GTPCH-I), the key enzyme for tetrahydrobiopterin de novo synthesis and to normalize tetrahydrobiopterin levels in hyperglycemic endothelial cells. We sought to determine whether in vivo treatment with the HMG-CoA reductase inhibitor atorvastatin is able to upregulate the GTPCH-I, to recouple eNOS and to normalize endothelial dysfunction in an experimental model of diabetes mellitus. Methods and results In male Wistar rats, diabetes was induced by streptozotocin (STZ, 60mg/kg). In STZ rats, atorvastatin feeding (20mg/kg/d, 7 weeks), normalized vascular dysfunction as analyzed by isometric tens…

Malemedicine.medical_specialtyNitric Oxide Synthase Type IIIGTP cyclohydrolase INitric Oxide Synthase Type IIReductaseArticleDiabetes Mellitus ExperimentalCytochrome P-450 Enzyme SystemEnosInternal medicineAtorvastatinmedicineAnimalsNADH NADPH OxidoreductasesPyrrolesRats WistarEndothelial dysfunctionGTP CyclohydrolaseNADPH oxidasebiologyStem CellsBody WeightMicrofilament ProteinsTetrahydrobiopterinPhosphoproteinsmedicine.diseasebiology.organism_classificationBiopterinRatsEnzyme ActivationIntramolecular OxidoreductasesVasodilationNitric oxide synthaseDisease Models AnimalOxidative StressTetrahydrofolate DehydrogenaseDiabetes Mellitus Type 1EndocrinologyHeptanoic AcidsHMG-CoA reductaseNADPH Oxidase 1biology.proteinEndothelium VascularHydroxymethylglutaryl-CoA Reductase InhibitorsCardiology and Cardiovascular MedicineCell Adhesion MoleculesDiabetic Angiopathiesmedicine.drugAtherosclerosis
researchProduct

Unraveling the role of protein dynamics in dihydrofolate reductase catalysis

2013

Protein dynamics have controversially been proposed to be at the heart of enzyme catalysis, but identification and analysis of dynamical effects in enzyme-catalyzed reactions have proved very challenging. Here, we tackle this question by comparing an enzyme with its heavy ((15)N, (13)C, (2)H substituted) counterpart, providing a subtle probe of dynamics. The crucial hydride transfer step of the reaction (the chemical step) occurs more slowly in the heavy enzyme. A combination of experimental results, quantum mechanics/molecular mechanics simulations, and theoretical analyses identify the origins of the observed differences in reactivity. The generally slightly slower reaction in the heavy e…

Models MolecularComputational chemistryStereochemistryKineticsBiophysicsMolecular Dynamics SimulationTritiumCatalysisEnzyme catalysisReaction coordinateReaction rateMolecular dynamicsQuantum biologyEscherichia coliReactivity (chemistry)Carbon IsotopesQuantum biologyMultidisciplinaryNitrogen IsotopesChemistryProtein dynamicsBiological chemistryProteinsTetrahydrofolate DehydrogenaseKineticsChemical physicsPhysical Sciences
researchProduct

Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate const…

2014

Catalysis by dihydrofolate reductase from the moderately thermophilic bacterium Geobacillus stearothermophilus (BsDHFR) was investigated by isotope substitution of the enzyme. The enzyme kinetic isotope effect for hydride transfer was close to unity at physiological temperatures but increased with decreasing temperatures to a value of 1.65 at 5 °C. This behavior is opposite to that observed for DHFR from Escherichia coli (EcDHFR), where the enzyme kinetic isotope effect increased slightly with increasing temperature. These experimental results were reproduced in the framework of variational transition-state theory that includes a dynamical recrossing coefficient that varies with the mass of…

Models MolecularRate constantsStatic ElectricityDihydrofolate reductaseMolecular ConformationThermodynamicsBiochemistryCatalysisCatalysisModerately thermophilicGeobacillus stearothermophilusColloid and Surface ChemistryReaction rate constantDihydrofolate reductaseKinetic isotope effectEscherichia coliGeobacillus stearothermophilusQDTransmission coefficientIncreasing temperaturesCarbon IsotopesbiologyIsotopeNitrogen IsotopesHydrideChemistryKinetic isotope effectsGeneral ChemistryCrystallographyTetrahydrofolate Dehydrogenasebiology.proteinThermodynamicsJournal of the American Chemical Society
researchProduct